Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(triphenylphosphine)iminium tricarbonylcyclopentadienylmolybdate

Cameron Evans, ${ }^{\text {a }}$ Brian K. Nicholson ${ }^{\text {a }}$ and Allen G. Oliver ${ }^{\text {b }}$

${ }^{\text {a }}$ Chemistry Department, University of Waikato, Private Bag 3105, Hamilton, New Zealand, and ${ }^{\mathbf{b}}$ Chemistry Department, University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence e-mail:
b. nicholson@waikato.ac.nz

Key indicators

Single-crystal X-ray study
$T=203 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.037$
$w R$ factor $=0.090$
Data-to-parameter ratio $=17.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

The crystal structure of bis(triphenylphosphine)iminium cyclopentadienyltricarbonylmolybdate, $[\mathrm{PPN}]\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{PPN}^{+}=\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~N}\right]^{+}, \mathrm{C}_{36} \mathrm{H}_{30} \mathrm{NP}_{2}\right)$, is reported. The anion is configured in the 'piano-stool' arrangement while the cation adopts a bent configuration about the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ bond. An 'expanded-phenyl-embrace' supramolecular motif is noted in the packing of the PPN^{+}cation.

Comment

Though a commonly used metal carbonyl reagent, the structure of $[\mathrm{PPN}]\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$, (I), has not been previously reported.

(I)

The anion adopts the classic piano-stool-type arrangement common for $\mathrm{Cp} M L_{3}$ systems. The average $\mathrm{Mo}-\mathrm{C}_{\mathrm{CO}}$ bond length $[1.930$ (3) \AA A is slightly larger than that reported for the tetrabutylammonium salt $[1.909$ (9) \AA] while the average $\mathrm{C}_{\mathrm{CO}}-\mathrm{Mo}-\mathrm{C}_{\mathrm{CO}}$ angle $\left[87(2)^{\circ}\right]$ and $\mathrm{Mo}-\mathrm{C}_{\mathrm{Cp}}$ distance [2.37 (2) A] are similar to those reported [88.1(3) and 2.37 (1) A respectively; Crotty et al., 1977]. The PPN ${ }^{+}$cation adopts the typical bent configuration about the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ bond [142.62 (14) ${ }^{\circ}$].

A characteristic of triphenylphosphine-related systems is the observance of 'phenyl embraces' as a crystal packing motif (Scudder \& Dance, 1998). These embraces involve intermolecular phenyl attractions (both edge-face and offset faceface attractions) forming extended networks through the crystal lattice. This type of packing motif is noted in the structure of $[\mathrm{PPN}]\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. The non-bonded $\mathrm{P}-$ P distance of 6.8606 (8) \AA and $\mathrm{N}-\mathrm{P}-\mathrm{P}$ angle of 72.41 (7) ${ }^{\circ}$ are characteristic of an 'expanded-phenyl-embrace' crystal packing motif in a compound containing PPN^{+}(Lewis \& Dance, 2000).

Experimental

$\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]_{2}(0.2 \mathrm{~g}, 0.41 \mathrm{mmol})$ was reduced in tetrahydrofuran (20 ml) over a $1 \% \mathrm{Na} / \mathrm{Hg}$ amalgam for $2-3 \mathrm{~h}$. A dichloromethane solution (5 ml) of $[\mathrm{PPN}] \mathrm{Cl}(0.47 \mathrm{~g}, 0.82 \mathrm{mmol})$ was added and the reaction mixture stirred for an additional 30 min . The pale

Received 4 September 2001
Accepted 1 October 2001
Online 6 October 2001
yellow-orange solution was transferred by syringe and solvent removed under vacuum. Recrystallization by addition of diethyl ether to a dichloromethane solution of the title compound produced a pale yellow powder. Crystals suitable for crystallographic analysis were obtained by liquid-liquid diffusion under a nitrogen atmosphere of diethyl ether and light petroleum spirits into a dichloromethane solution of the compound

Crystal data

$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{NP}_{2} \cdot \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{MoO}_{3}$
$M_{r}=783.61$
Monoclinic, $P 2_{1} / c$
$a=14.0385$ (2) \AA
$b=19.1269$ (2) \AA
$c=13.8322$ (1) \AA
$\beta=90.728(1)^{\circ}$
$V=3713.83(7) \AA^{3}$
$Z=4$

Data collection

Siemens SMART CCD
diffractometer
Multiscan scans
Absorption correction: empirical (Blessing, 1995)
$T_{\text {min }}=0.885, T_{\text {max }}=0.910$
22556 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.090$
$S=1.08$
8177 reflections
460 parameters
H -atom parameters constrained
H atoms were placed in calculated positions, with $U_{\text {iso }}$ values 1.2 times the $U_{\text {iso }}$ values of the atoms to which they are attached.

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: $S A D A B S$ (Blessing, 1995); program(s) used to solve structure: SHELXS-97 (Sheldrick, 1997);

Figure 1
Structure of $[\mathrm{PPN}]\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level (Farrugia, 1997)
program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors wish to thank the Marsden Fund administered by The Royal Society of New Zealand for financial support for this research.

References

Blessing, R. H. (1995). Acta Cryst. A51, pp. 33-38.
Crotty, D. E., Corey, E. R., Anderson, T. J., Glick, M. D. \& Oliver, J. P. (1977). Inorg. Chem. 16, 920-924.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Lewis G. R. \& Dance, I. (2000). J. Chem. Soc. Dalton Trans. pp. 299-306.
Scudder, M, \& Dance, I. (1998). J. Chem. Soc. Dalton Trans. pp. 329-344.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Universität Göttingen, Germany.
Siemens (1994). SMART, SAINT and SHELXTL. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.

